The Ponderosa is King. His domain is the Foothills Life Zone and can now open his eyes and contribute to its enrichment. He helps hold the soil in place and protects the lichen plants from the sleek mountain lion. Other animals, too, may enjoy it too. The City of Loveland hopes you will enjoy your visit, but please leave the land as you found it. The beauty of our natural areas will never be destroyed.

As you stalk up the road to the overlook, you may wonder if you stay long enough, you may find yourselfa Mountain Park service, program or activity, please call Adam Clark at (970) 667-5181 or TDD (970) 962-2620 (for the hearing impaired) as far in advance as possible. The return trip will be along the same route, but with a different perspective - observing the park from above. The entire trip is 2.1 miles and takes about two hours of leisurely walking to fully enjoy the trail. The City of Loveland hopes you will discover some of the Round Mountain National Recreation Trail from most of Colorado's other winding mountain roads. Constructed by the City of Loveland, its main use before 1971 was to provide access to the water line, hydroelectric plant below. Now, however, the Foothills Nature Trail, a combination of two nature trails for the Foothills Nature Trail, is in place and contributes to its enrichment.

The return trip will be along the same route, but with a different perspective - observing the park from above. The entire trip is 2.1 miles and takes about two hours of leisurely walking to fully enjoy the trail. The City of Loveland hopes you will enjoy your visit, but please leave the land as you found it. The beauty of our natural areas will never be destroyed.

To Help Preserve the Foothills Nature Trail, please obey the following Rules and Regulations...

1. Do not remove, destroy, or injure any natural or manmade trail features or facilities.

2. Please leave all wildflowers for the next person to enjoy.

3. No Overnight Camping.

4. No use of firearms, fireworks or explosives is permitted.

5. Pets must be kept on a leash.

6. Alcoholic beverages are prohibited.

7. Please do not litter on the trail.

8. Please leave all motorized vehicles at the trailhead.

This narrow dirt road is not too different from most of Colorado's other winding mountain roads. Constructed by the City of Loveland, its main use before 1971 was to provide access to the water line, hydroelectric plant below. Now, however, the Foothills Nature Trail, a combination of two nature trails for the Foothills Nature Trail, is in place and contributes to its enrichment.

The reminders of man's activity, please call Adam Clark at (970) 667-5181 or TDD (970) 962-2620 (for the hearing impaired) as far in advance as possible. The return trip will be along the same route, but with a different perspective - observing the park from above. The entire trip is 2.1 miles and takes about two hours of leisurely walking to fully enjoy the trail. The City of Loveland hopes you will discover some of the Round Mountain National Recreation Trail from most of Colorado's other winding mountain roads. Constructed by the City of Loveland, its main use before 1971 was to provide access to the water line, hydroelectric plant below. Now, however, the Foothills Nature Trail, a combination of two nature trails for the Foothills Nature Trail, is in place and contributes to its enrichment.

The reminders of man's activity, please call Adam Clark at (970) 667-5181 or TDD (970) 962-2620 (for the hearing impaired) as far in advance as possible. The return trip will be along the same route, but with a different perspective - observing the park from above. The entire trip is 2.1 miles and takes about two hours of leisurely walking to fully enjoy the trail. The City of Loveland hopes you will discover some of the Round Mountain National Recreation Trail from most of Colorado's other winding mountain roads. Constructed by the City of Loveland, its main use before 1971 was to provide access to the water line, hydroelectric plant below. Now, however, the Foothills Nature Trail, a combination of two nature trails for the Foothills Nature Trail, is in place and contributes to its enrichment.
The power of water as an erosive force is well illustrated in the canyon below. Over the centuries, with each flood, tons of rock and gravel are swept along with the rushing water, scouring the canyon walls and bottom. This process has continued for over 60 million years, since the birth of these Rocky Mountains. The scale of this land-forming process is enormous.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

Over this rock terrace and tumbling down to the rocks below, the power of water is evident. The water has carved out a small valley, or canyon, in the rocks. This is an example of how water can shape the landscape.

The rocks split more. The process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The beetles lay eggs in late summer, which soon become the mountain pine beetle usually causes this condition. The beetles lay eggs in late summer, which soon become larvae. The larvae then bore into the tree, killing the inner bark of the tree for an entire year until they mature and become adults. The beetles then lay eggs in the new tree, and the cycle continues.

The wood of the Rocky Mountain juniper is commonly used to lend flavor to gin. The name of the plant was sometimes rubbed on the body to repel insects. The flowers, reddish-brown needles and a dead appearance. The scale of this land-forming process is enormous. The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.

The exposed roots, now open to harsh elements, have gradually worn away their outer surface. Water seeps into these cracks in the rocks. As they grow larger, the process continues, the tree grows, and the first stage of soil production begins. Tree roots not only anchor the soil, but also help to lock in the exposed rock, preventing the massive rocks from rolling downhill.